Effect of water on the fluorine and chlorine partitioning behavior between olivine and silicate melt
نویسندگان
چکیده
Halogens show a range from moderate (F) to highly (Cl, Br, I) volatile and incompatible behavior, which makes them excellent tracers for volatile transport processes in the Earth's mantle. Experimentally determined fluorine and chlorine partitioning data between mantle minerals and silicate melt enable us to estimate Mid Ocean Ridge Basalt (MORB) and Ocean Island Basalt (OIB) source region concentrations for these elements. This study investigates the effect of varying small amounts of water on the fluorine and chlorine partitioning behavior at 1280 °C and 0.3 GPa between olivine and silicate melt in the Fe-free CMAS+F-Cl-Br-I-H2O model system. Results show that, within the uncertainty of the analyses, water has no effect on the chlorine partitioning behavior for bulk water contents ranging from 0.03 (2) wt% H2O (DClol/melt = 1.6 ± 0.9 × 10-4) to 0.33 (6) wt% H2O (DClol/melt = 2.2 ± 1.1 × 10-4). Consequently, with the effect of pressure being negligible in the uppermost mantle (Joachim et al. Chem Geol 416:65-78, 2015), temperature is the only parameter that needs to be considered for the determination of chlorine partition coefficients between olivine and melt at least in the simplified iron-free CMAS+F-Cl-Br-I-H2O system. In contrast, the fluorine partition coefficient increases linearly in this range and may be described at 1280 °C and 0.3 GPa with (R2 = 0.99): [Formula: see text]. The observed fluorine partitioning behavior supports the theory suggested by Crépisson et al. (Earth Planet Sci Lett 390:287-295, 2014) that fluorine and water are incorporated as clumped OH/F defects in the olivine structure. Results of this study further suggest that fluorine concentration estimates in OIB source regions are at least 10% lower than previously expected (Joachim et al. Chem Geol 416:65-78, 2015), implying that consideration of the effect of water on the fluorine partitioning behavior between Earth's mantle minerals and silicate melt is vital for a correct estimation of fluorine abundances in OIB source regions. Estimates for MORB source fluorine concentrations as well as chlorine abundances in both mantle source regions are within uncertainty not affected by the presence of water.
منابع مشابه
Partitioning of moderately siderophile elements among olivine, silicate melt, and sulfide melt: Constraints on core formation in the Earth and Mars
Abst rac t -This study investigates the effects of variations in the fugacities of oxygen and sulfur on the partitioning of first series transition metals (V, Cr, Mn, Fe, Co, Ni, and Cu) and W among coexisting sulfide melt, silicate melt, and olivine. Experiments were performed at 1 atm pressure, 1350°C, with the fugacities of oxygen and sulfur controlled by mixing CO2, CO, and SO2 gases. Start...
متن کاملExperimental partitioning of halogens and other trace elements between olivine, pyroxenes, amphibole and aqueous fluid at 2 GPa and 900–1,300 °C
We present new partition coefficients for various trace elements including Cl between olivine, pyroxenes, amphibole and coexisting chlorine-bearing aqueous fluid in a series of high-pressure experiments at 2 GPa between 900 and 1,300 °C in natural and synthetic systems. Diamond aggregates were added to the experimental capsule set-up in order to separate the fluid from the solid residue and ena...
متن کاملPartitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts
A series of high temperature experiments was undertaken to study partitioning of several highly siderophile elements (HSE; Ru, Rh, Pd, Re, Os, Ir, Pt and Au) between Cr-rich spinel, olivine, pyroxene and silicate melt. Runs were carried out on a Hawaiian ankaramite, a synthetic eucrite basalt, and a DiAn eutectic melt, at one bar, 19 kbar, and 20 kbar, respectively, in the temperature range of ...
متن کاملHigh pre-eruptive water contents preserved in lunar melt inclusions.
The Moon has long been thought to be highly depleted in volatiles such as water, and indeed published direct measurements of water in lunar volcanic glasses have never exceeded 50 parts per million (ppm). Here, we report in situ measurements of water in lunar melt inclusions; these samples of primitive lunar magma, by virtue of being trapped within olivine crystals before volcanic eruption, did...
متن کاملMineral / melt partitioning of trace elements during hydrous peridotite partial melting
This experimental study examines the mineral/ melt partitioning of incompatible trace elements among high-Ca clinopyroxene, garnet, and hydrous silicate melt at upper mantle pressure and temperature conditions. Experiments were performed at pressures of 1.2 and 1.6 GPa and temperatures of 1,185 to 1,370 C. Experimentally produced silicate melts contain up to 6.3 wt% dissolved H2O, and are satur...
متن کامل